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AbFbael. This paper deals with non-isothermal dispersive camer transport in an insulatar 
with trappingstates. The approximate solutionsoft he transport eqnatiomderived previously 
are extended here to include an arbitrary spatial distribution of generated carriersas well as 
the temperature and energy dependences of some trap parameters and the temperature 
dependence of the mieroscOpic carrier mobility. The accuracy of the formulae describiog 
thermally stimulated currents (nc) is verified by Monte Carlo calculations for exponential 
and Gaussian trap distributions. Methods of determining the shape of the trap distribution 
and the trap parameters kom the TSC data are dimmed. 

1. Introduction 

A major advance in understanding the electronic transport properties of disordered 
solids was the development of the theory of dispersive cirrier transport by %her and 
Mootroll 111, Noolandi [2,3], Schmidlin [4] and other authors (see reviews [5 ,6] ) .  They 
explained satisfactorily the extremely large dispersion of the transit times of excess 
carriers, revealed in the time-of-fight (TOF) measurements for many disordered 
materials. It was recognized that dispersive transport is related to the non-equilibrium 
occupancy of the localized states, for both trap-controlled and hopping transport mech- 
anisms. 

In the 198Os, the mentioned theory was extended to the case of non-isothermal 
carrier transport [7-111, thusgivinga new theory of thermally stimulated currents (TSC). 
Except for variable sample temperature, the assumptions of the 'TSC drift experiment' 
follow closely those of the TOF method. It was presupposed that the excess carriers are 
initially generated in the surface layer of the sample by light or ionizing radiation. Next, 
the sample is heated gradually, and the TSC induced by carrier drift in the applied 
field is monitored. It was shown that the described TSC technique can yield the same 
information about the localized states in the solid as the most commonly used TOF 
method. 

Regarding the Tsccaused by dispersive multiple-trapping carrier transport, two main 
approaches have been put forward by Plans ef a1 [8] and Tomaszewicz and Jachym [lo]. 
Both works were based on the simplified theory of isothermal dispersive transport [12- 
141 and gave similar results, despite the somewhat different approximations used for 
solving the transport equations. In this paper, the results obtained in [lo] are extended 
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to cover the cases of arbitrary spatial distribution of the generated carriers, as well as 
of temperaturedependent microsoopic camer mobility and some temperature- and 
energy-dependent trap parameters. The accuracy of the formulae describing TSC is 
proved by Monte Carlo calculations for model trap distributions. A more extensive 
review of the literature, as well as more details concerning the formulation of the 
transport equations and the Monte Carlo method, are given in the preceding paper 
(hereafter referred to as I) dealing with non-dispersive TSC. 

2. Formulation of the problem 

2.1. Transport equations 

The equations describing non-isothermal camier transport in a solid with trapping states 
are derived in section 2.2 of I. Only the equations themselves are repeated here for 
convenience: 

a[+, t )  + n&, t ) ] /at  + u(t) an(z, t)/az = 0 

@(I, t')n(z, t') dr' f a 0  

2.2. Dispersive transport regime 

Dispersive transport is characterized by a progressive thermalization of the carrierswith 
trapping states distributed in a wide energy region, E~ - E: S kT(t). In the following, we 
shall assume that the function C t ( ~ ,  ~)N,(E) varies slowly with energy compared to 
the Boltvnann factor exp[~/kT(t)]. The dominant part of the carriers then occupies 
relatively deep traps, from which no carrier emission takes place up to the given time t .  
Since theprobabilityofcarrieremissionfrom thesetrapsdoesnot dependon themoment 
t' of carrier capture, formula (3) for @(t,  t') can be simplified by setting I' = 0 in the 
lower limit of the integral in the exponential factor (cf. [lo]). Furthermore, we assume 
that the functions C,(E, t )  and-as implied by the detailed equilibrium principle (I, 
equation ( ~ ) ) - u ( E ,  t) can be expressed in the factorized form: 

CdE, t )  = W(t)Cto(E) (6) 
Y ( E ,  0 = w ( ~ ) [ T ( ~ ) / T o I ~ " Y ~ ( E )  (7) 

where C[,,(E) = C[(E, 0), Y ~ ( E )  = Y ( E ,  0) and the initial sample temperature To = T(0). 
This assumption is unnecessary if C f ( ~ ,  r )  and P ( E ,  t )  depend solely on one variable, E or 
t. The function @(t,  f ' )  then takes the form 

(8) @(t, t ')  = w(t')@(t, 0) 

where 
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One can note that equation (8) is also valid for the initial stage of carrier transport. In 
such a case canier detrapping and the time variation of the carrier trapping probability 
are negligible, which implies that @(t, t') = @(t, 0) = l/am, where a, is the mean free- 
carrier lifetime at the initial moment (cf. I, equation (16)). In the last formula the 
exponential term in the integrand may be approximated by the unit step function 
W E  - ~ ~ ( t ) ] ,  where the demarcation level E&) is given by the implicit equation [8, IO]  

This yields the simple formula 

valid for E! < eo@) < E ~ .  The level EO(t )  separates the shallower traps, which reached 
equilibrium occupancy, and the deeper ones, characterized by non-equilibrium popu- 
lation. Dispersive transport occurs therefore in the time region given implicitly by the 
above inequality. 

By inserting formula (8) into equation (2) we obtain, after simple transformations, 
tbe approximate equation describing the trapping/detrapping kinetics for dispersive 
transport: 

where @(t) 3 @(t ,  0). The physical meaning of the above equation may be better under- 
stood after its rearrangement into the form 

1 d@(t) 
w(t)@(t)n(z, t )  + -- nXz, 4.  an&, t )  -_ 

at @(t) dt 

One can show that the fist and second terms on the RHS represent, respectively, the 
rates of carrier capture in the energy region E 3 Eo(t ) ,  and of carrier emission from traps 
of depth equal to E0( t )  (cf. [IO]). In the above approximation the processes of carrier 
trapping and detrapping in the energy range E < Eo(t) are ignored. 

To simplify the transport equations further, we omit the term an(z, t) /at  from the 
continuity equation (I), which yields 

an&, t)/at + u(t) an@, t ) /az  = 0. (14) 

In the case of temperature-independent parameters po(t)  and C,(E, t )  this approxi- 
mation is valid for the time t + z (cf. [IO]). One may expect that the analogous criterion 
holds also in the present case. In the TSC experiments the measurement timet 9 r0 z 
and the considered approximation seems to be legitimate. In the following we assume 
that the carriers are generated in the sample by a light pulse of very short duration and 
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that no carrier injection takes place from the front electrode. Then the boundary 
condition for equations (12) and (14) is 

n(0, t) = 0 t > o .  (15) 

In contrast to previous papers on the subject, we shall consider here the case of arbitrary 
initialdistributionn(z, 0) ofcarriers in thesample. However, the initialconditioncannot 
be directly applied to equations (12) and (14), because the second of them is not valid 
for t =s z .  Instead, we assume that camer detrapping and the time variation of p(f )  and 
C[(E, I) are negligible in some time region from t = 0 to t b z. The corresponding 
solutions of exact transport equations (1)-(3) are (see appendix 1): 

n(2, f )  = 0 (16) 

(17) 
1 2  

nL(r, r )  = - n(z’, 0) exp[-(r - z’)/ro] dz’ 
ZtO i, 

where t > z .  These expressions may be utilized as the initial conditions for equations 
(12) and (14). It should be mentioned that the applicability of the resulting formulae for 
TSC in the case of bulk carrier generation requires, contrary to the case of surface 
generation, negligible carrier recombination during the whole TSC run. 

3. Analytical results 

3. I .  Solutions of transport equations 

The system of equations (12) and (14) governing carrier transport does not seem to have 
solutions in terms of elementary functions. In the following, we shall confine ourselves 
to some cases that allow us to derive simple formulae describing TSC. 

First, weshallneglect thetemperaturedependenceof&), C[(E, t )andv(~,  f),setting 
u(t)  = 1 and w(t) = 1 in equations (9, (12) and (14). Equations (12) and (14) are then 
solved easily, and the general solutions fulfilling condition (15) are: 

nt(z, t )  = @(t)  /‘g(z’) exp[-(z - z’)@(t)] dz’. 
0 

The function g(z) can be determined from conditions (16) and (17). Since in the case of 
no carrier retrapping O(t) = l/rm (cf. preceding section), it is seen that g(r)  = n(z, 0). 
Inserting the free-carrier density (18) into equation ( 5 ) ,  one obtains after simple trans- 
formations the following formula for TSC: 

For surface carrier generation, corresponding to the initial condition 
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n(z,O) = noro6(z) (21) 

from equation (20) one gets 

dt 

This formula has already been derived in a somewhat difFerent way in [lo]. For uniform 
bulk carrier generation, when 

n(z, 0) = no (23) 

one obtains 

ro@(t) + exp[-to@(t)] - 1 
5 0  @ 0) I(t) = l o  - dt 

We shall consider some general features of the TSC, given by equation (20). Provided 
that ro@(t) 9 1, the second term in the inner brackets can be neglected. Then, one 
obtains 

On the other hand, if ro@(t) 
(20) may be expanded into a power series. Taking three initial terms, one gets 

1, the exponential function in the integrand in equation 

I ( t )  = cIor~[-d@(t)/dt] (26) 

where the constant cis given by 

1 
%or0 

c = -r (1 - r/ro)*n(r, 0) dr. 

For surface and uniform volume carrier generation, corresponding to (21) and (U), the 
constant c = 112 and 116, respectively. 

As follows from equation (9), the function @(t) decreases monotonically with time. 
Therefore, equations (25) and (26) describe the initial and the final parts of the TSC 
curve. One can show that the current I ( f ) ,  given by (25) and (26), is an increasing and 
decreasing function of time, respectively, if the function C,(&, t)Nt(&) slowly falls with 
energy. The approximate position of the TSC maximum can be found by equating these 
formulae, which results in the implicit equation 

ro@(rc) = ~ - 1 ’ ~ .  (28) 

The time t, corresponds to the effective transit time of the carrier packet across the 
sample [lo]. Equations (25) and (26) are respectively valid for t 

Now we shall derive formulae determining the initial rise and the final decay of TSC 
for the general case of temperature-dependent p(t), C*(E, t )  and V ( E ,  f). Let us consider 
first the initial stage of carrier transport, for which carrier neutralization at the collecting 

re and t b re. 
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electrode is negligible, and almost all generated carriers remain in the sample. Inte- 
grating both sides of equation (12) with respect to z, and assuming that n(z, t )  < &(z,  t ) ,  
we obtain 

According to equation (5) ,  the initial TSC rise is expressed by 

Let us consider now the final stage of carrier transport, assuming that all the carriers 
emitted from traps of depth E&) are collected at the electrode without retrapping in the 
energy region E 3 Eo(+ The first term on the RHS of equation (13) can then be dropped, 
which results in 

Integrating this equation and making use of equations (14) and (15) yields 

ndz, t )  a @(I) n(z, f) 0: -[l/u(f)] d@(t)/dt. 

In the above relationships, the omitted factors depend solely on z. Hence, as results 
from equation ( 5 ) ,  the final TSC decay is given by 

I ( t )  0: -d@(f)/dt. (30) 
Formulae (29) and (30) generalize expressions (25) and (26). In (30), however, neither 
the value of the proportionality constant nor its dependence on r0 can be determined. 

3.2. Discussion 

For the purposes of both the following discussion as well as the numerical calculations, 
we shall specify here the form of the functions T(t), p(t), C t ( ~ ,  I), V ( E ,  f) and PIt(€). We 
assume the linear scheme of sample heating, 

T(t) = To + /9f (31) 

where @ is the heating rate. In what follows, all the quantities will be expressed in terms 
of sample temperature instead of time. 

Except for the final part of the section, we shall neglect the energy dependences of 
the carrier capture coefficient and the frequency factor. This assumption is commonly 
used in the theory of isothermal dispersive transport and corresponds to the case of 
strongly coupled electron-multiphonon interactions. For weak electron-multiphonon 
coupling both quantities vary exponentially with energy [15,16], 

C&) = Cto(0) exp(-E/kT,) (32) 

vu(€) = s,(O) exp(-E/kT,) (33) 

where the characteristic temperature T, is related to the mean phonon energy. We 
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consider the usual case of the power-law dependences of p(T), C,(T) and v (T)  on 
temperature (cf. I, section 3.2), corresponding to the equations: 

u(T) = (T/To)’ (34) 

w(T)  = (T/To)lf i -b .  (35) 
The value of the parameter a depends on the free-carrier scattering mechanism (a  = 
-3/2 and 3/2 for scattering on acoustic phonons and charged impurities, respectively). 
The value of b is determined by the kind of trapping centres (b = 0 and 2 for neutral and 
coulombic ones). 

Once the sample heating mode and the form of the function Y ( E ,  T) are given, 
equation (10) determining the demarcation energy q,(T) may be solved approximately 
(see appendix 2). In the present case the demarcation level is a linear function of 
temperature: 

&O(T) = k(c*T- T*)  (36) 
c* = c1 In(vo/j3Ti-b) + c2. (37) 

The numerical values of T*, c1 and c2 depend on the parameter b. 

exponential distribution 
As the model trap distributions leading to dispersive transport, we choose the 

NI(&) = (Nt0, /W exp[-(& - &‘)/kT,I 

N ~ ( E )  = ( 2 ~ , ~ ~ / i d ~ k T ~ )  exp{-[(E - E : ) / ~ T , ] ~ } .  

(38) 

(39) 

and the special case of Gaussian distribution 

In both formulae N,,, stands for the total density of traps, the characteristic temperature 
T, determines the rate of trap density decrease with energy and the upper limit of the 
trap distribution = m. 

Makinguseoftheequationsobtainedintheprevioussections, onecannowcalculate 
the TSC for a given trap distribution. Below, only some formulae referring to the 
exponential one (38) are given, because of the unique features of the resulting TSC. With 
the neglect of the temperature dependence of p( T )  and C,( T ) ,  from equations (Z), (26) 
and (28) one gets formulae determining the initial rise and the final drop of the TSC, as 
well as the temperature T, = T(zJ corresponding approximately to the TSC maximum: 

I(T) Q exp(+c*T/T,) (40) 
T, = (1/cX)[&:/k + T* + T ~ I ~ ( C ~ ~ ~ ~ ~ / ~ , ~ ) ] .  (41) 

In equation (40) the plus and minus signs refer to the temperature regions T < T, and 
T >  Te, respectively. Essentially the same formulae were derived earlier in [7,8,11] for 
the case of surface carrier generation. 

From equation (41) it appears that the TSC maximum shifts towards higher tem- 
peratures with the increase of the heating rate /3 as well as the ratio d/E.  The last 
dependence is a general feature of the ‘TSC transport peak’. Equation (40) shows that 
the rates of initial rise and final decrease of the TSC are independent of the electric field 
andthesample thickness. Onasemilogarithmicplotofln IversusT,theyarerepresented 
by straight lines of slopes +c*/T,. This is analogous to the ‘universality’ property of 
isothermal dispersive current transients, valid for the exponential trap distribution (see 
e.g. [5]) .  The plot of In I versus Tin the case of TSC can be viewed as the analogue of the 



3992 W Tomaszewicz 

Scher-Montroll [l] plot of log Iversus log t, referring to isothermal dispersive transport. 
If the temperature variation of p ( T )  and C,(T) is taken into account, the considered plot 
of TSC is not strictly linear for T < T, (compare (25) and (29)). Then, the ‘universality’ 
of the shape of TSC curves with respect to d / E  does not hold rigorously. 

From now on we shall consider some techniques for determining the energetic trap 
distribution from the TSC data. Analogous methods were proposed earlier in [lo] for the 
case of surface carrier generation. One of them consists of fitting the temperature 
dependence of the charge Q(T) collected in the temperature region from To to T. The 
corresponding formula is obtained by integrating equation (20): 

where Qo = I,a,isthe totalchargegeneratedin thesample. Onecan find the relationship 
between Qo and the total charge Q.. flowing in the measuring circuit, which corresponds 
to the area under the TSC curve. Since ro@(T) Q 1 for T > Te, from equation (42) one 
gets 

e., =- eo /:(I - z/ro)n(z, 0) dr. 
no50 

(43) 

In the casesof surface and uniform bulk camer generation (cf. equations (21) and (23)), 
Qm = Qo and Q0/2, respectively. Once the initial distribution of carriers is specified, 
from (42) and (43) one gets the formula expressing the ratio Q(T)/Qm in terms of the 
function ro@(7‘). ThusthefunctionQ(T)/po, beingproportionaltothetotaltrapdensity 
in the energy region E 3 E,(T) (cf. equation (U)), can be determined. The above 
procedure was applied in [17] to the reinterpretation of the TSC measurements in poly- 
vinylcarbazole [18]. The same function may be found in the simplest way from the initial 
TSC increase since, as results from equation (42), 

Q(T) Qo/zo@(T) T <  T, (44) 
or from the dependence of temperature T. on the ratio d / E  (see equation (28)). Finally, 
the shape of the trap distribution can be obtained directly from the final TSC decay. It 
follows from equation (30), as well as equations (11) and (36), that 

[ (T) = L ? ~ * C N l N ( E O ( T ) )  T >  T,. (45) 

This is in principle the formula derived by Simmons et a1 [19] under the assumption of 
no carrier retrapping over the whole TSC run. It should be stressed that the previous 
methods ignore the temperature dependence of p(T) and C,(T), which limit their 
accuracy, while the last method is free from this disadvantage. 

Thedescribed techniques make it possible to find theshapeofthefunctionNI(E0(T)). 
Additionally, one needs to determine the position of the demarcation level E,(?‘) in 
the energy gap as a function of temperature. We assume first that the temperature 
dependence of p(T) and C,(T) has no significant influence on the shape of TSC curves. 
It is apparent from equation (11) that the function @(T) depends on the temperature 
only via E&“). Taking into account the form of equations (20), (42), (36) and (37) one 
can conclude that the courses of Z(T)/c*p and Q(T) for different values of b, plotted 
versusc*T - P, shouldcoincide. Thus, measurementsof theTscor thecollectedcharge 
for several heating rates allow us to determine the parameters in (36) and (37) and 
the function cO(T), irrespective of the kind of trapping centres. If the TSC peaks are 
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significantly affected by the temperature dependence of p(T) and Ct(T), the plots of 
l(T)/c*/3 versus c*T - T *  should overlap solely in the high-temperature region T > T, 
(cf. equation (30) or (45)). For this reason, it would be desirable to determine the 
function from the final TSC decay. According to equations (29) and (34)-(37) 
the course of Z(T)T '~z -" -b /c"~  in the low-temperature region T <  T,, plotted versus 
c*T- T*, should also not depend on /3. In principle, this allows one to determine the 
sum of the parameters a and b, which govern respectively the temperature dependence 
of p ( T )  as well as of C,(T) and 4T). If the temperature dependence of the microscopic 
carrier mobility is known a priori, one can calculate the value of 6 ,  which gives some 
information about the trapping centres, and of the frequency factor U,,. 

Let us discuss in brief the case of weak electron-phonon coupling, when Ct0(&) and 
vO(&) vary exponentially with energy (see equations (32) and (33)). It is obvious that 
formulae (20), (29) and (30). determining TSC, as well as the majority of the resulting 
equations still remain valid. One should bear in mind that the integrand in equation (11) 
for the function @(T) contains in the general case C,(E) instead of Cto, and that the 
demarcation energy &,,(T) is a non-linear function of the temperature (appendix 2). In 
particular, equation (45) should be replaced by 

Because of another form of the expression for cO(T),  the TSC dependence on heating 
rate p should differ from that established before, though the discrepancy may not be 
very significant (cf. next section). Thus the TSC measurements for several values of B 
enable us in principle to distinguish between the cases of strong and weak electron- 
phonon coupling. In the last case, this would allow determination of the characteristic 
temperature T,, the function E ~ ( T )  and in consequence the form of the energetic trap 
profile. 

Considering the reliability of the described techniques, one should recognize that 
the rate of TSC decay for T %  T, is independent of the spatial trap distribution [20,21], 
the extent of trap occupancy [22] and, probably, on the space-charge field due to 
generated or permanently trapped carriers. All the mentioned factors would affect the 
shape of the TSC peaks in the temperature region T S  T, as well as their position. 
Therefore, the analysis of the final TSC decay utilizing formulae (45) or (46) seems to be 
most appropriate. It is worth noting that a similar method of determining the trap 
distribution from the current transient I(t) for tB  z, was developed in the case of 
isothermal dispersive transport (e.g. [W]). On the other hand, the determination of the 
parameters b and vo from the initial rise of the TSC, as described above, may involve a 
significant error. 

4. Numerical analysis 

4.1. Monte Carlo method 

In order to verify the accuracy of the formulae determining TSC, we carried out Monte 
Carlo simulations of non-isothermal dispersive transport. The calculation procedure is 
analogous to that described in I. The transport of the individual carrier is characterized 
by the following random variables: the free-carrier lifetime At", the trap depth E and 
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the carrier dwell-time At, in the trap. The values of these variables are calculated 
repeatedly from the equations 

Aftr = -z,(t,) In(X') (47) 
E = E: - kT, In(X") ( 4 8 4  
E = E! + kT,[-ln(X")]*~* sin(xX"') (48b) 

& = & O -  f [k  T,Tc/(T, + TI1 MX") ( 4 8 4  

Heref,,andt,denote themomentsofcamerreleasefrom the trapandofcarriercapture, 
respectively, andX'; . . ., X""arerandomnumbers,unifolmlydistributedin theinterval 
(0,l). Equations (48a) and (48b) concern the cases of exponential (38) and Gaussian 
(39) trap distributions, respectively, as well as of Ct0(&) = const, while equation (48c) 
corresponds to the case of exponential distribution of traps (38) and C , o ( ~ )  = exp(-E/ 
kTp). Formula (48a) follows from equation (47) of I and formula (48c) is obtained in a 
similar manner. Formula (48b) results from the Box-Muller algorithm for generating 
random variables of a Gaussian distribution [24]. Implicit equation (49) for Arris solved 
numerically in a similar way as in I. The Tsc curve is obtained by repeating the above 
procedure for a large number N of carriers and averaging the resulting current. 

In all the calculations, the limit E: of the trap distribution is set considerably greater 
than kT,. The 'cut-off in the trap density is introduced solely for calculational 
convenience. First, the number of 'inefficient' trapping events in the energy interval 
E < ~ ~ ( 7 ' ~ )  is reduced. Secondly, the convergence of the series in the procedure for 
solvingequation (49) (cf. I, appendix 3)  is ameliored. From approximate equation ( l l ) ,  
determining the function @(T), it is seen that itscourse and, in consequence, the 1sc do 
not depend on the density of traps with depth 'E < E ~ ( T ~ )  if E: < E~(T , ) .  Then, the 
position of the trap limit E: in the energy gap has no essential importance. 

4.2. Comparison of analytical and numerical results 

In the figures, the results of Monte Carlo simulations (marked by points) are compared 
with those following from the approximate solutions of transport equations (shown by 
full and broken curves). Figures 1-4 concern the energy- and temperature-independent 
carrier capture coefficient and frequency factor, as well as the free-carrier mobility 
independent of temperature. 

Figure 1 shows the TSC peaks obtained for the exponential distribution of traps (38), 
and both surface and uniform bulk carrier generation. The full curves are calculated 
from equations (22) and (24); the broken lines, which represent the initial rise and the 
final decay of TSC, are calculated from equations (25), (26) and (27). The function @(T) 
is computed using approximate equations ( l l ) ,  (36) and (A2.6), (A2.7). It is seen that 
the accuracyof the equations improves-asexpected (cf. section2.2)-with theincrease 
of characteristic temperature T,, and is rather satisfactory for the ratio T,/To = 5 (figure 
l (a)) .  The semilogarithmic plot somewhat masks the discrepancies between analytical 
and numerical results. For example, the differences in the height of Tsc peaks range 
from about 2% (figure l (a) .  curve 1) to about 8% (figure l(b), curve 2). In the high- 
temperature region the Monte Carlo results exhibit appreciable fluctuations, probably 
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mgure1.Tsccuruescalculatedforexponentialdistributio"of trapsandbothsurface(1) and 
volume (2) carrier generation: r&/To = r&T0 = 2.28 x 10-'2[4), 2.31 x lO'"(b); 
voTo/p = TJT, = 5 (a), 3 (b);  cf/kTo = 30; To = 100 K; N = 10' (U), IO' (b). 

10-9 

-;" - 
b. .. - 
n-" 

we 

r/r, 
Flgl~e2.TSCcur~esobtained forGaussian trapdistribution and botbsurface(1) andvolume 
(2)generationofcarnem:z~]To = 10-';r&/To =7.46 x 10-'z(a),1.08 X lO'"(b);voTo/ 
p =  10'5;TJTos 1 5 ( a ) , 1 0 ( b ) ; ~ ~ / k T ~ = 3 0 ; T ~ =  100K;N=2x 104(4 ,1 ) ,4X lO4(a,2) ,  
4 x lo' (b, l ) ,  8 X IO3 (b, 2). 

due to the small number of carriers remaining in the sample. The general course of T?.C 
suggests, however, a good coincidence with the analytical formulae. 

Figure 2 presents analogous results for the Gaussian trap distribution (39). The 
accuracy of the approximate equations, determiningnc, again ameliorates with increas- 
ing value of T,. In contrast to the case of the exponential distribution, the TSC peaks are 
asymmetric, their low-temperature half-widths being larger than the high-temperature 
ones. The TSC characteristics are, therefore, quite sensitive to changes in the energetic 
trap distribution. This proves the potential usefulness of the considered TSC method. 

The plots in figures 3 and 4 correspond to identical conditions (exponential trap 
distribution, surface carrier generation) and data set used as curve (1) in figure I@). In 
figure 3, the time evolution of the total carrier density in the sample, 
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lo-' 
~.. ~- - 

Figure 4. Energy distribution of trapped carriers averaged over sample thickness for two 
different times. The results are obtained for exponential distribution of traps and carrier 
generation at the sample surface. The parameters are as in figure l(a). 

n,&, 0 = n ( Z ,  t )  + n,(z, 0 
is displayed. The trapped-carrier density exceeds in the present case the free one by 
more than nine orders of magnitude, and nM(z, f) = n,(z, f). From equations (19) and 
(21) it follows that the trapped-carrier density should decrease exponentially with space 
coordinate. The numerical simulation approximately confirms this behaviour. 

In figure 4, the time variation of the energetic distribution of trapped carriers 
n; (z ,  I, E )  is presented as its average over the sample thickness. The corresponding 
formulae are derived in appendix 3. The broken and full sloping lines are for the cases 
of thermal equilibrium between free and trapped carriers ( E  < E&), equation (A3.3)) 
and of no carrier emission from the traps ( E  > e&), equation (A3.5)), respectively. One 
should recall that equation (12), governing the carrier trapping/detrapping kinetics, was 
derived under the assumption of a dominant number of carriers captured in the energy 
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Figure 5. TSC peaks calculated for exponential trap distribution and both surface ( 1 )  and 
volume(2)carriergenerationin the caseofweakelectron-phonon coupling: r,@/To = IO-"; 
@?/To  = 1.87 x IO-" (a), 1.32 x 10.'' (b) ;  ua(&P)To/j3 = 10"; TJTo = Tp/To = 8 (a), 4 
(b) ;&f /kTO =30; T a = l C Q K N =  lO'(u,l) ,ZX 10d(u,2),2.5 X101(b ,1 ) ,5X  lO'(b.2). 

region E > ~ ~ ( t ) .  In general, the analytical formulae reproduce the numerical cal- 
culations quite well. The given results verify the concept of demarcation energy E o ( t ) ,  if 
only the trap density varies slowly with energy. 

Figure 5 shows the TSC peaks obtained for an exponential distribution of traps with 
C,(&) and vO(e) a exp(-&/kTJ (weak electron-multiphonon coupling). The tem- 
perature dependence of p ( 0 ,  C,(E. T )  and U(&, T )  is still ignored. The notations are the 
same as in figures 1 and 2. The function @(T)  in equations (22) and (24)-(26) for TSC is 
computedfrom ( l l ) ,  (A2.6), (A2.7) and (A2.15). The accuracyoftheequationsshould 
now depend mainly on the parameter T,, defined by T;' = T;l + Ti1 which charac- 
terizes the rate of decrease of the function Cto(~)Nt(~).  For T, = 4T0 (figure .5(a)) the 
accuracy is quite good, though slight deviations seem to exist in the high-temperature 
region.TbeTscpeakshavealmostidenticalshapeasthoseinfigure 1,concemingenergy- 
independent C,,,(E) and V ~ ( E )  (strong electron-multiphonon coupling). This indicates 
that the demarcation level cO(T), although given by non-linear expression (A2. 15), shifts 
nearly linearly with temperature. The TSC dependence on heating rate 0 should then 
have a similar form to that corresponding to Y ~ ( E )  = const. Thus, in experimental 
practiceit may bedifficult todiscriminate between thecasesofstrongand weakelectron- 
phonon coupling. 

Finally, figure 6 illustrates the influence of temperature variation of p ( T ) ,  C,( 7') and 
v( 7') on the Tsc course. Figures 6(u) and (b) relate to the neutral and coulombic trapping 
centres, respectively; curves (1) and (2) relate to carrier scattering on acoustic phonons 
and charged impurities. The TSC peaks are calculated with the same assumptions 
(exponential distribution of traps, carrier generation at the sample surface, energy- 
independent CO(€) and v0(c)), and for identical values of the parameters at T = To as 
the peaks (1) in figure l(b). The initial rise and the final decrease of TSC (full lines) are 
computed from equations (29) and (30). The values of the unknown proportionality 
constant in (30) are chosen to obtain the best fit with Monte Carlo results. The accuracy 
of the equations is essentially the same as in figure l(b). Inspection of figures l(b) and 6 
shows meaningful differences between the individual TSC peaks, mainly due to the 
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vr, 
Figure 6 . m p e a k s  obtained for exponentialdistribution of trapsandcamer generation at 
the sample surface. The individual peakscarrespond to different temperature dependences 
of f l (T),  C,(T) and v(T).  Parameters: r&/TQ = IO-"; .&/TO = 2.31 X IO-"; woT,/B = 

TJT,= 3;cP/kT0 = 30; To= 100K;n = -l ,S(l) ,  IS(2 ) ;b  = O(a),Z(b);N= 6 X 10' 
( I ) ,  10". 

temperature variation of free-carrier mobility. One can conclude that the neglect of the 
dependence of p(T) ,  C,(r) and u ( T )  on temperature may introduce appreciable error 
in the energetic trap profile, determined from the TSC data. 

5. Conclusions 

In this work we have investigated the TSC related to multiple-trapping dispersive carrier 
transport. The derived formulae have been verified by the Monte Carlo evaluation of 
TSC. The main attention has been paid to the case of energy-independent carrier capture 
coefficient and frequency factor (strong electron-multiphonon coupling). As regards 
this case, the following conclusions can be made. 

(i) The shape of the TSC peak is determined mainly by the forms of energetic trap 
distribution and spatial distribution of generated camers. The TSC is also influenced by 
the temperature dependence of carrier capture coefficient and frequency factor (i.e. by 
the kind of trapping centres) as well as of free-carrier mobility. 

(ii) In principle, several techniques could be applied to the TSC data analysis. The 
majority of them, however, do not take into account the temperature dependence of 
the quantities mentioned above, and may introduce some errors into the determined 
energetic profiles of traps. The only exception is the method utilizing the final TSC decay. 

(iii) Some information about the kind of trapping centres can be inferred from the 
initial increase of TSC. For this purpose, the temperature dependence of microscopic 
carrier mobility must be known a priori. 

These conclusions do not change essentially when the carrier capture coefficient and 
the frequency factor decrease exponentially with energy (weak electron-multiphonon 
coupling). The TSC course is then related to the form of 'effective density' (i.e. product 
of density and camer capture coefficient) of traps. In principle the cases of strong and 
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weakelectron-phonon coupling may be distinguished on the basisof thencdependence 
on heating rate. 

The ncpeaks of a similar form can also be due to hopping carrier transport between 
the localized states [9]. At the present stage of the theory one cannot establish the 
distinguishing features of TSC related to multiple-trapping and hopping transport. 

The given treatment of TSC applies to strongly dispersive transport, when the trap 
density and the carrier capture coefficient vary slowly with energy, and the energetic 
distribution of trapped carriers differs significantly from the equilibrium one. There 
exists the possibility of an alternative approach for both isothermal and non-isothermal 
dispersive transport, assuming nearly perfect thermalization of captured carriers. This 
will be the subject of a forthcoming paper. 
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Appendix 1. Solutions of equations (1H3) in the case of no carrier detrapping 

Neglecting in equations (1)-(3) the carrier detrapping and the time dependence of p( t )  
and Cl(&, t), i.e. setting u(f) = 1 and @(t ,  t') = l/tm (cf. section 2 4 ,  we get 

(Al.l) 

(A1.2) 

Differentiation of (A1.2) with respect to time and insertion into (Al.1) yields 

a+, !)/at + an@, t)/az = -+, t)/ro. (A1.3) 

The solutions of equations (A1.2) and (A1.3), corresponding to instantaneous surface 
carrier generation, are well known from the theory of the TOF method (see e.g. [E]). 
However, we need a more general solution, valid for an arbitrary initial distribution 
n(r, 0) of generated carriers. The general solution of (A1.3), fulfilling the boundary 
condition (15), has the form 

(A1.4) 

where H(. . .)is the unit step function. Substituting (A1.4) into (A1.2) and introducing 
the new integration variable z' = z - t we obtain 

n(z, t )  = n(z - t, 0) exp(-t/qo)H(z - t) 

n(z', 0) exp[-(z - z')/rtO]H(z') dz'. (A1.5) 

Ift>z,from (A1.4)and(A1.5) onegetsequations(16) and(17). 
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Appendix 2. Expressions for demarcation energy 

Weshallassume herethelinearheatingscheme(31)andexpress V(E, T)inthefactorized 
form (7). Equation (lo), which determines the demarcation level E ~ ( T ) .  can then be 
written, using equations (4) and ( 3 3 ,  as 

or, after a change of integration variable, s = Eo/kT', as 

(A2.1) 

If eo/kT, Eo/kT0 % 1 and Tis not too close to TO, the upper integration limit in (A2.2) 
may be replaced by inlinity and the asymptotic formula 

may be used (cf. I, equations (A2.4) and (A2.5)). Thus, from (A2.2) and (A2.3) one 
gets the equation 

exp(EO/kT) = vo(Eo)kT'-b/BTa-bsp. (A2.4) 

Let us consider first the case of strong electron-phonon coupling, v0(&) = const, and 

EO/kT= ln(vokT4-b/~T~-bEo).  (A2.5) 

Since vOTo/B % 1, the RHS of (A2.5) is a slowly varying function of E,, and T. Therefore, 
E ~ (  T) may be well approximated by a linear function (36) of temperature. The values of 
coefficients in (36) and (37) can be determined by solving numerically equation (A2.5) 
for some range of Tand v , / B T $ - ~ .  For coulombic (6 = 2) and neutral (6 = 0) centres 
one obtains, respectively, 

rewrite equation (A2.4) in the form 

c* = 0.967 In(vo/P) + 3.7 (A2.6) 

T* = 180K 

[26] and 

(A2.7) 

c* = 0.9741n(u0/PT2,) + 16.6 (A2.8) 

T*=700K. (A2.9) 

Here, v0@ is expressed in K-* and To in K. Formulae (A2.8) and (A2.9) were obtained 
by fitting the function q ( T )  in the temperature range 100 K S T S 450 K for lo7 K-3 < 
vo/pT$ < 1Olz K-3. The accuracy of equation (36) is then better than6%. The accuracy 
of equations (ll),  (36), (A2.8) and (A2.9). determining the function @ ( T )  for neutral 
centres, is illustrated by figure A . l .  
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Figwe A.]. Function Q(T) for exponential trap dis- 
tribution calculated from exact formula (3) (full 
curve) and from approximate formulae (Il), (36) and 

1 . 0  1 2  1.4 1.6 1.8 2 0  (AZ.S),(A2.9)(brokenline): voTo/p = 10'5;TJTo = 
5 ;  e!/kTo = 30; TO = 100 K. 
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Let us consider now the case of weak electron-phonon coupling, when vO(&) 
decreasesexponentialy withenergy (cf. equation (33)). Fromequation (A2.4) one then 
gets 

( ~ ~ / k ) ( l / T  + l/Tp) = In[vo(0) k ~ ~ - ~ / p T i - ~ ~ ~ ] .  (A2.10) 

This equation can be transformed to a form identical to ( A 2 4  by introducing the new 
variables Eo and r,  defined by 

Eo/r= E&'T + l/Tp) (A2.11) 

E 0 / i -  = E o / P b  (A2.12) 

or, explicitly, by 
CO E O ( l  + T/Tp)(4-"i(3-b) 

r =  T(1 + T/Tp)'"3-b'. 

(A2.13) 

(A2.14) 

Hence, F o ( n  can be approximated by a h e a r  function of Twith the same coeficients c* 
and Tx as in (36) (in (A2.6) and (A2.8) v o  should be replaced by ~ ~ ( 0 ) ) .  Returning to 
the variables 

(A2.15) 

The above transformation does not hold for b = 3, but we shall not consider this 
exceptional case. 

and Twith the aid of (A2.13) and (A2.14) one gets the formula 

~~(7') = k[c*T(l + T/Tp)1'(3-b) - T * ] / ( l  + T/Tp)(4-b) / (3-b) .  

Appendix 3. Energetic distribution of trapped carriers 
Theequationgoverning thekineticsofcarriertrappingand detrappingforagiven energy 
level has the form 

(A3.1) 

(I, equation (Z)), where n; (2, t ,  E )  is the carrier density in the traps per unit energy. The 
first and second terms on the RHS are the rates of carrier capture and emission, respect- 
ively. In what follows, we assume for simplicity that Ct(&, t )  = const. 

an; ( 2 ,  t ,  &)/at  = CdE, WI(E)n(z, t )  - n; ( 2 ,  t ,   de, t )  
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As indicated in section 2.2, the carriers captured in the energy range E < E ~ ( C )  are 
essentially in thermal equilibrium with the free carriers. One can then set in (A3.1) 
an; (2, t ,  &)/at = 0, which gives 

Averaging this expression over L one obtains 
n; (2 ,  t ,  E )  = CINI(~)rr(~, t)n(z, t) E < Eo($ (‘43.2) 

- 
n; ( r ,  E )  = C1Nt(e) - (A3.3) 

The probability of camer emission from the traps having depth E > ~ ~ ( t )  is very small 
and the second term on the RHS of (A3.1) may then be dropped. This yields 

n; (2 ,  t ,  E )  = C&(E) 1. n(r, t’) d i  E ’ E&) (A3.4) 
0 

and 

CtNt(E) (r n(z,  i) dz) dt’, 
- 
n: ( t ,  E )  = - 

t O  
(A3.5) 

The calculations of z(t, E )  can be facilitated by recognizing that the integrals in (A3.3) 
and (‘43.5) are proportional to I(t) and e(?), respectively (cf. equations (S), (20) and 
(42)). Obviously, the demarcation limit between both energy regions cannot be sharp. 
Io fact, there exists some intermediate region in the vicinity of ~ ~ ( t )  in which equations 
(A3.3) and (A3.5) do not apply (see figure 4). 
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